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ABSTRACT

The statistical covariance technique is proposed as a computer
analysis tool for missile systems error propagation studies. It is
shown that on representative examples the statistical covarlance tech-
nique performs better, based on speed and accuracy, than the traditional
Monte Carlo approach of averaging a large number of random simulation
runs. Alt' ough exact only for linear, time-varying systems, the covariance
technique 6ives attractive approximate results for a wide range of
nonlinear missile systems. The extension to nonlinear systems utilizes
incremental equations about the noise-free solution. Except in the
extreme cases of very harsh nonlinearities and high input noise levels,
the statistical covariance technique has been shown to yield, for the
systems considered, results comparable to 1000 Monte Carlo runs. More-
over, an accuracy prediction procedure has been developed to estimate
the error to be expected from statistical covariance as well as the
number of Monte Carlo runs required for comparable accuracy. Further-
more, an automatic sensitivity program is suggested for utilizing the
statistical covariance technique on existing simulations without repro-
gramming. It is shown that the usual number of Monte Carlo runs yields
very inaccurate results, e.g., for one system considered 25 runs results
in an error of 30 percent while 100 runs gives 10 percent error. A
total computer software package for statistical covariance, including
automatic sensitivity, accuracy prediction, and miss distance programs,
is proposed for further development.
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1. Introduction

a. Noise in Missile Systems

The consideration of noise problems is an inherent part
of the analysis and design of large-scale missile systems. The usual
noise problems occur when either system parameters or disturbance inputs
vary randomly. Such stochastic variations may be represented as random
processes or, in the case of unknown bias effects, as random variables.
Random disturbances often appear as noisy signal inputs or as measure-
ment noise. Typical noise sources in missile systems are radar clutter,
gyro drift and bias, boresight and alignment errors, and wind gust dis-
turbances. In all cases, random variations in system parameters and
external inputs result in errors which are propagated throughout the
missile system.

This report examines the problem of noise propagation in large-scale missile
systems from two basic viewpoints. The first of these is the Monte Carlo tech-
nique, which exercises a computer simulation of the missile systemwith a large
number of random sample functions. The second approach is an analytical
method referred to as the statistical covariance technique. Numerical results
indicate that the statistical covariance approach is an effective and effi-
cient tool for most missile systems analysis situations and, in most practical
instances, a significant improvement over the Monte Carlo method.

b. Background on the Monte Carlo Method

Previously, the primary capability for Monte Carlo noise
studies was based on the use of analog noise generators. Analog sources
of noise generally depend upon a gas tube in a magnetic field. Bekey
and Karplus [1 have argued that the specifications of analog noise
generators are usually only approximately known and that better noise
sources are available. Other noise studies rely on tables of random
numbers [2), but the use of tables requires some type of storage device.
More recently, digital pseudo-random number generators have become the
standard input for Monte Carlo simulations. Chambers (3], Hull and
Dobell [41, MacLaren and Marsaglia [5], and Gelder [6] are among those
who have developed mixed congruential and multiplicative recurrence
formulas for generating pseudo-random numbers.* These formulas yield
numbers that are uniformly distributed on the unit interval (0, 1).

*The term pseudo-random is appropriate because the numbers are not
actually random but are generated by deterministic means. This deter-
ministic origination has the inherent advantage of providing reproducible
input sequences which are often useful for computer program debugging.
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The problem of generating digital representations of correlated con-
tinuous random inputs has been treated in a report by Rowland [7]. Tech-
niques for designing digital shaping filters have been developed in
reports by GuJar and Kavanagh [8], Holliday [9], Baum [101, Broste [111,
and Conner [12]. Moreover, digital simulation problems encountered when
using only a finite sequence of random data are discussed in reports
by Jansson (131 and Brown and Rowland [141. A comprehensive study
resulting in a computer software package for Monte Carlo simulations was
performed within the U.S. Army Missile Command, Redstone Arsenal by
J. L. Harris [15].

It should be emphasized that any statistical information related to
noise propagation in missile systems simulations must agree with cor-
rectly implemented Monte Carlo results.

c. Background for the Statistical Covariance Technique

The statistical covariance approach stems from the use of
the error covariance matrix in the Kalman filtering equations [16, 17].
Almost every new book in the last five years on stochastic estimation
and control includes a discussion of the statistical covariance tech-
nique for linear, time-varying systems [18-23]. The method has also
been applied for handling variations about a nominal flight path obtained
from nonlinear system equations. Kuhnel and Sage [24] applied the
covariance technique to sensitivity equations about the nominal flight
path caused by trajectory initial dispersions and parameter variations.
They considered a thirty-third order, 6 degree-of-freedom homing missile
model to illustrate the usefulness of the technique to a realistic situ-
ation. Irwin and Hung [251 applied the same method to nonlinear systems
having random bias inputs, e.g., misalignment or drift errors. They
compared the direct and adjoint approaches for evaluating the state
covariance matrix, while Kuhnel and Sage used only the adjoint method.
These papers demonstrated that the covariance technique is useful for
nonlinear systems. There have been other proposed linearization schemes
which yielded varying degrees of success [26, 27]. These approaches are
based on component by component linearization rather than the more power-
ful approach of linearizing variational equations about the exact nominal
trajectory. More recently, Brown [28-30) has used the statistical
covariance approach to solve trajectory optimization problems for non-
linear feedback systems. In addition, Clark [31, 32] has developed
related results using improved estimation about a nominal trajectory.

The statistical covariance technique is generally recognized as the
modern approach for handling error propagation in guidance and control
systems. Its application to missile systems analysis, emphasizing
advantages and limitations, will be demonstrated in later paragraphs of
this report.
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d. The Error Propagation Problem

The analysis problem to be considered here may be
described by the vector differential equation

x = f(x, r(t), w(t), t) (1)

where

x = the n-dimensional vector of system variables

r(t) = the non-random inputs

w(t) = the continuous random process disturbance inputs

t = the independent variable representing time.

For simplicity of notation, the vector r(t) in Equation (I) will be
suppressed hereafter, and the system under consideration will be
expressed as

x=ft) (2)

The problem is to determine the probability density function of the
system variables x as a function of time t. In most cases of interest,
it will be sufficient to find only the mean and variance of x(t).

e. Outline of the Report

Following this brief introductory background material and
problem definition, Paragraph 2 describes the Monte Carlo approach in
detail and gives numerical results for a simple example. It is shown
that a very large number of simulation runs (up to 1000) are needed to
yield acceptable accuracy. The statistical covariance technique is
introduced in Paragraph 3. The basic approach is developed for linear
systems and extended for an approximate analysis of nonlinear systems.
Paragraph 4 presents program refinements, including an automatic inter-
rogation program for determining sensitivity coefficients in existing
large-scale missile simulations. Paragraph 5 discusses the use of the
statistical covariance technique for large-scale systems and an approxi-
mate sequential algorithm is developed. Finally, Paragraph 6 summarizes
the conclusions of this report and indicates problem areas for future
consideration.

3



2. Monte Carlo Studies

The traditional approach for the analysis of noise propaga-
tion in dynamical systems involves Monte Carlo-based statistics. Two
elements are needed in the digital implementation of the Monte Carlo
method. The first of these is the digital generation of a sequence of
pseudo-random numbers for input to the given system. Several multi-
plicative random number generators are investigated in this paragraph.
The second consideration is the sampling problem inherent in representing
continuous systems and signals digitally. The modification of the vari-
ance of the generated random sequence as a function of the integration
step size is necessary to handle this sampling problem.

This paragraph selects a particular digital random number generator
for use in subsequent work by testing several popular generators on a
representative system. It should be noted that even this "best" genera-
tor yields poor results when only 100 to 200 Monte Carlo runs are used.
Therefore, the case for implementing the statistical covariance tech-
nique to be described in Paragraph 3 is strengthened.

a. Digital Random Number Generators

The recurrence formula often utilized in generating
pseudo-random numbers has the form

Z k+l = AZ k (Modulo M) (3)

which is referred to as the multiplicative method. The scalar constants
A and M may be selected to insure good statistical properties. Several
requirements for selecting A and Mare given in a report by Brown and Rowland (14],

from which the values of A = 19971 and M = 220 are highly recommended
for use with a starting number Z = 31571. It should be noted

0

that the suggested generator yielded pseudo-random numbers with con-
siderably better statistical properties than several other widely used
generators, including the Harris generator (151.

The meaning of the modulo operation in Equation (3) is that the
product AZk is first divided by M and the remainder is taken as Zk+l,

the next random number. Each random number may be normalized to the
unit interval by dividing by M. The resulting sequence of numbers will
be approximately uniformly distributed on (0, 1). Moreover, the random
number sequence satisfies the requirements necessary for the digital
representation of Gaussian white noise.

4



Box and Muller [33] developed a direct (or exact) approach for
transfdrming two independent random variables from the same uniform dis-
tribution on the unit interval to a pair of independent random variables
obeying a zero-mean, unity-variance normal distribution. The uniform
random variables Z1 and Z2 are related to the normal random variables
Y1 and Y2 by

Y= (-2 loge Zl)2 cos 21Z 2

Y = (-2 loge Z1)2 sin 2gZ 2  (4)

These transformations were used in obtaining some of the numerical
results to be presented. A second method for obtaining normally dis-
tributed random numbers is to sum 12 numbers uniformly distributed on
(0, 1) and subtract the sum of their means. This approach, referred to
as the central-limit technique, is easier to apply but requires a larger
number of random numbers for averaging. Both methods are used on a
second-order system later in the following section.

b. Numerical Results

Two multiplicative digital pseudo-random generators ýere
tested initially on the XDS Sigma 5. Both used A = 19971 with a starting
number Z 0f= 31571. The program for the first generator, for which

2

M = 220 f 1048576 as suggested by Brown [14], is shown in Figure 1. Pro-
gram statements 4 through 7 provide initialization for the uniform genera-
tor given by statements 13 through 21 and 28. Statements 25 and 26
transform the uniform results into a normal distribution according to
Equation (4). The first 30 numbers from this generator are given in
Figure A-I of Appendix A. Unnormalized integers IX, the uniformly dis-
tributed numbers U, and the normally distributed numbers XNORM are

listed.

31The second generator differs from the first only in that M = 2 is
used. To effect this change, statements 14 through 21 of the program
in Figure 1 were replaced by the four statements

IX = IY

IF(IX) 5, 5, 6

5 IY = IY + 2147483647+1

6 U IY*0.4656612873E-9 (5)

5



1 C OPERATION OF A MULTIPLICATIVE DIGITAL GENERATOR
2 C
3 C
4 XMEAN=O.
5 SIG-I.
6 IX=31571
7 DUM=O.1
8 DO 99 K=1,30
9 C
10 C MULTIPLICATIVE GENERATOR
11 C WITH M=2 TO THE 31ST POWER
12 C
13 IY=19971*IX
14 IX=IY
15 IF(IX)5,5,6
16 5 IY=IY+2147483647+l
17 6 U=IY*0.4656612873E-9
18 C
19 C TRANSFORMATION TO NORMAL
20 C
21 Z=SQRT(-2.0*ALOG(DUM))*SIG
22 XNORM=Z*COS (6.28318*U)+XMEAN
23 C
24 DUM=U
25 PRINT 77,K,IX,U,XNORM
26 77 FORMAT(6X,14,8X,I12,2F15.6)
27 99 CONTINUE
28 STOP
29 END

Figure 1. The Multiplicative Pseudo-Random Number Brown

(M = 2 20) Generator

Because the XDS Sigma 5 is a 32-bit machine, the division by M is handled
31

automatically when M is selected as 2 . Therefore, the resulting pro-
gram, as evidenced by Equation (5), is simpler. The latter two state-
ments in Equation (5) represent register shifts which accomplish the
automatic division. Numerical results for the operation of the second
generator are given in Figures A-2 and A-3 of Appendix A.

A program is given in Figure A-4 of Appendix A for examining some
of the statistical properties of the two generators. Sample variance

6



and means are plotted in Figures 2 and 3 as functions of the number N of
pseudo-random numbers generated. The following observations may be made
regarding this data:

1) The prespecified means and variances are obtained as N becomes
sufficiently large.

2) For finite sequences of generated numbers, the sample means and
variances vary up to several percent about the prespecified
values.

1.20

1.15 - -BROWN (M - 23 1 )-

1.10| ROWN IN- 20)-

/SPECIFIED VARIANCE
1.05

1.00

0 1 2 3 4 5 6 7 6 9 10

N(THOWSAND41

Figure 2. Sample Variances for Two Multiplicative Generators
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0.07

/-BROW iN (M -2")

0.04 --

( 0.03-

A 0.02

-0.01

-0.05 - -t I BRW M-21

0 1 2 3 4 5 6 7 8 9 10

N (THOUSANDS)

Figure 3. Sample Means for Two Multiplicative Genrators

Another important statistical property to be considered in random

number generation is the autocorrelation function. It is noted in a
report by Brown and Rowland [141 that the serial autocorrelation coeffi-

cients for independent Gaussian random sequences should be asymptotically
normally distributed with mean zero and variance 1/N. The Brown multi-

plicative generator with M = 220 satisfies the hypothesis of independence
with a high degree of probability [14].
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c. Discrete Representations for Continuous Noise Processes

The use of random numbers as disturbance input sample
functions for dynamical systems requires special considerations. It is
necessary to determine discrete representations for continuous noise
processes [7]. If pseudo-random numbers are held constant over one
sampling period H, then the corresponding autocorrelation function is the
triangular form shown in Figure 4. It is required that this triangular
function represent as closely as possible the impulse function for the
continuous case. Equating the power spectral densities, i.e., Fourier
transforms of the autocorrelation functions, of discrete and continuous
cases, yields

0d '(6)
Qwd ýH

where Qwd and Qw are the variances of the discrete and continuous cases,

respectively. Together with the proper utilization of a multiplicative
pseudo-random number generator, the relationship in Equation (6) is the
most important element in Monte Carlo simulations.

AUTOCORRELATION POWER SPECTRAL
FUNCTIONS DENSITIES

CONTINUOUS O
WHITE NOISE

OU=CETE 
w

WHITE NOISE 4- H 1t

Figure 4. Discretization Effects for White Noise

d. Simulation Results

Consider the time-invariant, second-order, linear system
described by

X1 *X 2

k2 - 2x I 3x2 + w (7)

9



with x!(O) = x 2 (O) = 0. Equation (7) gives, in phase variable form,

the state equations of the system with transfer function

1

H(s) = (s + 1)(s + 2) (8)

where xI represents the output x and x 2 represents k. The input w is a

zero-mean, unity-variance, gaussian white noise signal applied for all
t ' 0. The problem is to investigate the performance in Monte Carlo
simulations for Equation (7) by using several multiplicative pseudo-
random number generators.

The computer program used for testing the Brown (M = 2 20) generator
with the exact nonlinear transformation in Equation (4) is included as
Figure A-5 of Appendix A. The program shown was changed (statement 10)
to allow 25, 50, 100, 200, 500, and 1000 simulation runs to be ensemble-
averaged at half-second intervals from t = 0 to t = 5 seconds. The
variance of the output x is plotted as a function of time t in Figure 5

for the Brown (M = 2 20) generator using the exact transformation in
Equation (4). The exact variance solution is determined by convolution
in Appendix B*. Large errors were obtained for all curves except the
case using L000 runs.

Figures 6 and 7 show the average percent error obtained for the
output variance of Equaticn (7) as a function of the number of runs for
several generators. Using the basic program in Figure A-5 in Appendix
A, statements 27 through 34 were modified according to Equation (5) to

give corresponding data for the Brown (M = 2 31) generator. Two new
multiplicative generators were also testeo. One of these, the SAM-D
generator, has been used in guidance simulation studies for a large-scale
air defense missile system. TLe SAM-D generator has a multiplier A of
899 and a starting number Z = 1073741823. The other generator [341,0

which has been widely used on the IBM 360, has a multiplier A and starting
number Z = 1220703125. Figure 6 shows results for these four generators0

obtained by using the exact nonlinear transformation in Eqtation (4) from
uniform to normal. Figure 7 shows results using the central-limit approach
approach of summing 12 numbers from the uniform generators. It should be

noted that, while the Brown (=220 ) generator had an average error of only
1.5 percent for 1000 runs, the largest error obtained at the 10 equally-
spaced test points was 2.7 percent. Therefore, results for even 1000 runs
may be considered to be only marginally acceptable in some applications.

The statistical covariance technique to be described in Paragraph 3 also
yields the exact solution. Moreover, the statistical covariance technique
is much easier to apply as well as being more amenable for machine com-
putation than the convolution approach.

10
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1 - EXACT SOLUTION
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0.070
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Figure 5. Monte Carlo Results for the System in Equation (7) Using

the Brown (M = 2 20) Generator with the Exact Nonlinear
Transformation to Normal
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Figure 6. Average Percent Error on Output Variance Versus the Numberj

of Monte Carlo Runs for Generators Using the Exact Nonlinear
Transformation in Equation (4)
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Figure 7. Average Percent Error on Output Variance Versus the Number
of Monte Carlo Runs for Generators Using the Central-Limit
Transformation
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e. Step Sizes Versus Number of Runs

Consideration should also be given to the problem of how
to use a fixed number of random numbers in a Monte Carlo simulation.
For example, the question arises as to whether the error in the output
variance would be smaller by using a large step size with many runs or
a small step size with fewer runs. If N is the number of sample pointsP

per run and NR is the number of runs to be ensemble-averaged, then the

error in the output variance obviously decreases as either Np or NR

increases. Note that the produce NpNR is the total number of random

numbers to be used. The problem is to determine the values of N and NR'

when the product NpNR is fixed, to yield the smallest possible error.

Figure 8 shows plots of average error for the output variance as a
function of the step size H for the system in Equation (7) when the first

100,000 random numbers are used from the Brown (M = 220) generator. For
example, the value at H = 0.01 for the 5-second problem was obtained by
using N = 500 and NR = 200. Two methods of averaging the error vari-

ance data at half-second intervals were used. The first treated all data
points equally, but the second approach weighted the data according
to the number of random numbers which had been put into the system
prior to that particular problem time. For example, the data at
t = 3.0 seconds was weighted with a factor of only 60 percent as large
as the data at t = 5.0 seconds, because only 60,000 random numbers
were applied to the system up to t = 3.0 seconds while 100,000 were
used on the range t = 0 to 5.0 seconds. The curve in Figure 7 shows
that as large a step size as possible should be used without violating
conditions for which truncation errors become significant in integrating
the system equations. In this example, the maximum step size under
those conditions was H = 0.5 second. Note that the use of a somewhat
smaller step size gave much larger average errors in the output
variance.

f. Summary

A detailed description has been given on the digital
implementation of the Monte Carlo method. Discretization problems and
pseudo-random number generation have been discussed, and several multi-
plicative generators have been tested on a second-order linear system.

Simulations showed that the Brown (M = 2 20) generator performed consis-
tently well inavariety of tests. An interesting result is that for max-
imum efficiency in Monte Carlo simulations the largest step size compati-
ble with integration accuracy should be used with a large number of com-
puter runs for ensemble-averaging. Inaccuracies of the Monte Carlo
method, as well as the large amount of computer time required, point to
the need for the statistical covariance technique of Paragraph 3.

14
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Figure 8. Determining the Optimum Utilization of 100,000 Random Numbers
i. Monte Carlo Simulations for System in Equation (7)

3. The Statistical Covariance Technique

An analytical method is developed in this paragraph and com-
pared on a nonlinear systeri with the Monte Carlo approach described in
Paragraph 2. The statistical covariance technique is derived as an exact
solution for linear, time-varying systems and then extended for an approx-
imate analysis of the error propagation problem in nonlinear systems.
The method is also applied to the problems of miss distance studies and4
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error budgeting. The primary conclusion of this paragraph is that the
statistical covariance technique is valid for a wide range of input
noise signals and parameters in nonlinear system analysis.

a. Derivation of Statistical Covariance Results

Let the system under consideration be described by a
linear, time-varying vector differential equation of the form

-- Ax + Bw , (9)

where

x = the n-dimensional state vector

w = an m-dimensional input vector

A = an n by n matrix

B = an n by m matrix

The input vector w has elements that are zero-mean white noise with
a covariance matrix given by

E fw(t) j(T~4 0 Q (t - T)(10)

The matrix Qw, as well as the matrices A and B, may be time-varying.

Let the covariance matrix of the state x be defined by

P(t) A Efx(t) xT(t)} , (11)

where T denotes the transpose.

The problem is to determine P(t) in terms of A, B, and Qw" Three

approaches to the problem will be used. The first two apply directly
to the continuous system in Equation (9) and the third pertains to a
discretized version of the system.

(1) The Integral Solution. The first derivation of an
expression for P(t) utilizes the integral solution for x(t). From
Equation (9),
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1(t) 0 ~(t~ t) x(t) + ft 0I(t, -r) B(T) w(,r) dT (12)

t
0

Therefore,

P(t) = Ef12SWt2 XT(t)

t

t
0

[~( 1  ) ~t +f D(t, 'r) B(T) H(T) dj Tj (13)

0

Performing the indicated multiplicaLions in Equation (13) and noting that
x(t ) and w(t) are uncorrelated, yields

+ft f 0(t, TI) B(TI) EJ() wT() 'T 2) BT(¶2) dTldT 2
o o

(14)

Using Equation (10) and the sifting property of the delta function,
the following is obtained from Equation (14).

,.,:o(•,•o) (to) oT(t,'o

+ f o(t•, T ) B() 1) (T)) BT(Tr)d 1 rl (15)

t
0

17



4

Equation.(15) is the desired integral solution for P(t). However, by
forming P(t) from Equation (15) and using the relationship

d((t, T)
dt = t,-)(6

the result may be expressed as the following matrix differential
equation:

P=AP + PAT +.BQwBT (17)

This differential form of the statistical covariance equation is the
primary result of Paragraph 2.

(2) The Differential Solution Directly. Using Equation
(9) directly,

E 042E + Bs-) 2ET} + Ex (Ax02 + B T

Substituting Equation (12) into Equation (18) for x(t) and again applying
the sifting property of the delta function to perform the integrations,
Equation (17) is obtained [18].

(3) The Discrete Version. Equation (12) may be written
in the discrete version as

4k4l k 4 + hk-k (19)

Therefore,
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Pk+l =E (xk+l Xkl})

=EI[, k + h[kA+ +hkJ}

= 0k Pk O+hk Qdhd (20)

which is the discrete equivalent* of Equation (17).

b. Approximate Analysis of Nonlinear Systems

The application of the statistical covariance technique
to nonlinear systems can be achieved as an approximate analysis. Con-
sider small variations 5x(t), caused by the input disturbance noise
w(t), about the (noise-free) nominal trajectory XN(t), as shown in

Figure 9. These 5x variations are assumed to be sufficiently small to
satisfy linear perturbation equations, i.e.,

• sx(t) = x(t) - XN(t) (21)

and

Lx = A(t)bx + B(t) w(t) , (22)

where

af

B(t) = (23)

*Recall that Qw and Qwd' the covariance matrices for the continu-

ous and discrete cases, respectively, are related by Qwd = 0w/H, where

H is the discretization interval as given in Equation (6) of Paragraph 2.
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Figure 9. A Sketch Showing Incremental Variations 5x(t)
About a Nominal Trajectory X N(t)

Sdenotes the mean of w,(which has been assumed zero in the problem

formulation). The nonlinear vector function f is given in Equation (2).
The only approximation made is that the second and higher order terms
in 5x are negligible when compared with the linear terms which appear
in Equation (22). This approximation is valid when the 5x variations are
sufficiently small.

(I) Numerical Results for Nonlinear Systems. The fol-
lowing numerical results are given to provide insight into the practi-
cality of using the statistical covariance technique for nonlinear
systems. In particular, the ranges of noise signals and parameters of
the system nonlinearity are determined for which the statistical covari-
ance technique is recommended. Comparisons are made with 25, 50, 100,
200, and 1000 Monte Carlo runs.
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(a) Example 1 - Consider the second-order nonlinear
system shown in Figure 10. The system equations are

;c1 =-2xl+x 2 +a x sign (x 2 )

x = "x 2 + w(t) , (24)

where w(t) is a Gaussian white noise process applied for t 1 0. The
process w(t) has zero mean and variance Qw. The initial condition on

x is zero, but x 2(0) is allowed to vary in parts of this first example.

The statistical covariance technique and the Monte Carlo method
were programmed for system Equation (24) in the single computer program
given in Figure C-i of Appendix C. The step size of H = 0.05 was
selected according to the pseudo-random number utilization criterion
developed in Paragraph 2. Note that for a = 0 and x 2 (0) = 0 the system

in Figure 10 is identical to system Equations (7) and (8) of Paragraph 2 ,
except that a different set of state variables has been chosen in
Equation (24). Figure 11 shows a sketch of typical Monte Carlo runs
along with the one-sigma contours from the statistical covariance results
for a = 0.05, x 2(0) = 0.1, and Qw = 0.05. As the number of Monte Carlo

runs becomes large, i.e., on the order of 1000 runs, the one-sigma con-
tours from the statistical covariance technique are approximately the
same (within 2 percent) as the one-sigma contours computed from the
sample functions.

The validity of the statistical covariance technique for several
values of a and Qw is examined in Figures 12 and 13. In each case, the

statistical covariance result agreed within 2 percent with 1000 Monte
Carlo runs for small values of the parameters. As a and Qw were increased,

the error in the statistical covariance solution also increased. These
curves are used later to estimate the accuracy expected from the statis-
tical covariance technique by examining the nonlinear system equations directly.

Comparisons with a limited number of Monte Carlo runs are given in
Figures 14 and 15. The first of these figures compares time plots of
the output variance for 25, 50, 100, 200, and 1000 runs with the sta-
tistical covariance results. Figure 15 shows averaged results as percent
error on the output variance versus the input noise covariance Qw. All

error curves are based on 1000 runs as the standard for comparison. In view
of the results of Figures 6 and 7 in Paragraph 2, it should not be too
surprising to find that even 200 runs yield errors of approximately 8
percent, while only 25 runs yield approximately 25 percent error.
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Figure 10. The Open-Loop System and System Nonlinearity
Described by Equation (24)

An interesting problem was encountered when varying x 2 (0) for this

example. It was found that, for a = 0.05 and Qw = 0.1, the percent

difference between the statistical covariance result and 1000 Monte Carlo

runs increased rapidly as x 2 (0) was increased. However, for reasons

explained later, it was suspected that the 1000 Monte Carlo simulation

runs for large x 2 (O) were not giving correct results. To prove this
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Figure 12. Variations in Statistical Covariance Results as a Function
of the Amount of System Nonlinearity

conjecture, the linear system (t = 0) was investigated by varying x 2 (0)

as shown in Figure 16. After rechecking the computations to verify that
step size and integration accuracy were acceptable, it was concluded that
the inaccuracy of the digital random number generator must be the cause
of the errors. In particular, the non-zero means and nonunity variance
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Figure 13. Variations in Statistical Covariance Results as a Function
of the Input Noise

characteristics shown in Figures 2 and 3 of Paragraph 2 resulted in the
unusual performance of Figure 16. The obvious conclusions is that a
better random number sequence is needed for the realistic situation
where the nominal trajectory is frequently far from zero.

(b) Example 2 -- The statistical covariance technique
is also valid for nonlinear feedback systems. Consider the system given
in Figure 17, which is described by
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figure 14. Monte Carlo and Statistical Covariance Results Versus Time
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Figure 16. Time Plots of the Output Variance for Various x 2 (O)
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2x= + X +x +ax 2sign x)

2 = " " x2 + w(t) (25)

Note that Equation (25) is the system Equation (24) of Figure 10 with the
addition of a negative unity feedback loop. Results similar to those in
Figure 15 for the open-loop case were obtained for Equation (25). These
curves are shown in Figure 18.

1 
F'

SYSTEM
NONLINEARITY

Figure 17. Closed-Loop System Description for Equation (25)

(2) Predicting Statistical Covariance Accuracy. It would
be desirable to be aole to predict in advance the accuracy of the sta-
tistical covariance technique for nonlinear systems. An exact prediction
of the expected accuracy is not possible because no exact analytical
solution can be found, in general, for the output variance of nonlinear
systems. However, the result from a large number of Monte Carlo runs
may be regarded as "exact" for the purpose of accuracy prediction, but
even then (as shown in Paragraph 2) some inaccuracy is present. The
reason for using the statistical covariance technique is to avoid the
time-consuming Monte Carlo approach.

Suppose the Monte Carlo runs had been made for one particular
design condition (parameter setting) of a given missile system. Using
this information, the following procedure could be used to estimate the
accuracy of the statistical covariance technique for sufficiently small
changes in the parameter settings. As a particular example to illustrate
the procedure, consider the exact incremental equation associated with
Equation (24), i.e.,
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Figure 18. Monte Carlo and Statistical Covariance Results Versus Qw
for the Closed-Loop System for Equation (25)

BA 2 = - •x 2 + W(t) (26)

Suppose that the nonlinear term in Equation (26) is required to be not
greater than k percent of the corresponding linear terms, i~e.,
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I

IC B 2cxxI j 2bx +[1 +2alxli xl (27)

Squaring Equation (27) and taking expected values yields

2(34 (_k' F 2  2 1224ar a 8X2) 0) 'x +[1l + 2 a1x 21 Na8rox

+ 4[1 + 2 crjx 2 ] IE rx 1 "x21 1(28)
Note that E{J~4} has been approximated by 3 a4, which is exact in this

case because 5x2 is Gaussian. Using the steady-state values of the vari-

ance terms obtained from the linear case (a = 0) yields

2 %
5a 12

2 %abx 2 =2•

E 2=(29)

Substituting Equation (29) into Equation (28) gives, after simplifications,

(C?)2[. + 1 j + 2 axx2(M + N 1 1 + 2 ax (t) j} (30)

The equality in Equation (30) is plotted in Figure 19, which shows that
as either a or % increases, the percent k of the firsz incremental

equation in Equation (26) caused by the nonlinear term increases rapidly.
Using the information in Figure 19 together with Figures 12 and 13, the
percent error in the output variance as a function of the parameter k
may be plotted. The sketch for varying a and QW is shown in Figure 20.

If k is less than 5 percent, then the error in the output variance is also
less than 5 percent. However, for k = 20 percent, the error in thc out-
put variance is approximately 30 percent. If c and % are such that k is
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Figure 19. Plots of k Versus a and Q.

approximately 20 percent, then the statistical covariance technique :om-

pares in accuracy to approximately 25 Monte Carlo runs (30 percent error).

However, if k = 5 percent, then the accuracy of the statistical covariance

technique is better than 200 Monte Carlo runs. Therefore, k may be com-

puted in advance from the incremental equations to determine the expected

accuracy and the number of Monte Carlo runs which would yield approximately

the same accuracy as the statist cal covariance technique for the given

nonlinear system.
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Figure 20. Plots of Percent Error for Statistical Covariance Versus k

These observations on the accuracy of the statistical covariance
technique as a function of the quantity k are correct only for the
single example previously considered. However, it can be expected that
other second-order systems with parameters sufficiently near those of the
previous example would yield results with corresponding accuracy. In
particular, it should be expected, as %hown in Figure 20, the average

percent error in output variance would be on the order of 1.5 times the
value of k. Moreover, some useful information would be obtained even if
this error varied by as much as 1 to 2 times k. However, variations of
from 50 to 100 times k would be unexpected.
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Monte Carlo simulation experience is usually available on those
missile systems where noise disturbances have been a problem. Curves
similar to those in Figure 20 can be plotted for the particular missile
system being considered. As stated previously, these curves can be used
to yield approximate estimates of the accuracy of the statistical
covariance technique in given situations.

c. Miss Distance Studies

It is important to be able to apply the results of the
statistical covariance technique to miss distance studies in missile
systems analysis. The only approximation made in extending the basic
covariance method to nonlinear systems is that the incremental variations
about the nominal flight conditions obey a linearized differential equa-
tion. As previously stated, this approximation is valid for sufficiently
small noise disturbances or small nonlinear variations. However, to
apply the statistical covariance technique to the missile miss distance
problem, one further assumption is needed. This assumption is that the
incremental system varialles bx are Gaussianly distributed with a mean
of zero and a covariance given by P(t) from the statistical covariance
solution.

There are several reasons to believe that the Gaussian assumption
is a good one. First, recall that many of the noise input disturbances
encountered in missile systems are approximately Gaussian. While Gaus-
sian inputs to nonlinear systems do not result precisely in Gaussianly
distributed system states, the deviation from the Gaussain condition is
caused only by the inexactness of the approximation in linearizing the
perturbation equations in bx. If these linearized equations were exact,
then 5x would be Gaussian for Gaussian inputs. A second reason for
giving credence to the Gaussian assumption is the Central-Limit Theorem
effect, which states that as the number of independent inputs becomes
larger, the total effect on the system tends toward a Gaussian condition.
Finally, experience has shown that the convolution property of linear
subsystem equations inevitably makes the subsystem outputs much closer
to being Gaussianly distributed than whatever input distribution was
applied.

Applying the Gaussian assumption, the joint probability density
function for the incremental state variation bx may be written as

p( _x) = 1 exp - lT P_ . (31)

( 2 r)n /det P(t)
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If the statistical covariance result P(t) is used only to compute
the miss distance md, not all components of P(t) are needed. In that

case, a submatrix is formed by selecting from P(t) those components
included in

2
'By r', yb z

P1(t) (32)Plr by Cr byz a2z

where
2 121
by =

a5Z z E ibz21

ra•yaz b E{8y z}

In Equation (32), bY and bz represent the incremental variations in
orthogonal components of the miss distance (Figure 21). Therefore, if
bY and bz are assumed to be jointly normal (Gaussian), the resulting
Joint density function is

pOy, 5z) = exp 1- - (5y bz) -l) (by) (33)
2Tr dtp 1 (ýt) 2 b Ct zI

If Equation (31) holds, then so must Equation (33). However, Equation
(33) may be true without Equation (31) being true, i.e., in miss distance
studies using the statistical covariance method, it is necessary to
assume only that by and bz are jointly normal; the remaining system
states may not be Gaussianly distributed.

In calculating the circular error probable (CEP) in miss distance
studies, the probability density function of the miss di.stance, md, must

be determined. The random variable md may be expressed either as

md = (y) 2  z)2 (34)
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Figure 21. The Incremental Variation in the Miss Distance
Resolved Into Components

which is the direct form used in Monte Carlo simulations or as

md = + (,l) 2  (35)

which is preferred for use with the statistical covariance technique.

In Equation (35), the uncorrelated variables y 1 and bzI may be obtained
by a linear transformation on by and 5z. As shown in detail in Appendix
D, the resulting expression for the probability density function of md is

216 2 2md sin e Cos e d (6
P (md) f 2n a I 1 exp 21 21 de (36

0 by Eý /Z-
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where a y1 and 52 1 are the variances of the transformed variables by and
1 by

5z , respectively. Moreover, the probability distribution function
P(md) is given by

md

P(md) f p(md) dmd (37)
0

and the CEP is defined as that value of md for which

1
P(md) = 2

It should be pointed out that the definite integral in Equation (37)
can be solved analytically only for the case in which

2 2
byl = z

Otherwise, the integration may be performed numerically on the digital
computer. If

2 2
ýbyl Z= bzl ,

then p(md) in Equation (36) is the Rayleigh probability density function

given by

md [ 1o2
Pmm) exp . d 2-for m ? 0 (38)

0nyl [2tyljd

0 otherwise

Moreover, Equation (38) yields

P(md)= 1- exp 2 [
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from which

P (mld) =2

when

d = dy 2 n2 = 1.17byl

Therefore, the CEP has been obtained analytically for this special case

as 1.17 a y 1 . The probability density function p(md) is shown in Figure

22. Whenever 2yI * 21, the resulting probability density curve

obtained via numerical integration has a similar shape, though not pre-
cisely a Rayleigh curve.

Figure 22. The Rayleigh Probability Density Function

In summary, risults from the statistical covariance technique can
be used to determine statistical information about missile systems
miss distance. The procedure is to transform the correlated orthogonal
components of the miss distance into an uncorrelated set of orthogonal
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components 5y and 5z. The density and distribution functions of md

are found from Equations (36) and (37) in terms of 'bly and a z1. Sub-

sequently, the CEP can be determined by using the distribution function.

d. Error Budgeting

The statistical covariance technique can be applied to the
problem of error budgeting for determining what part of the output
variance is caused by any specific noise source. For example, if the
noise source is the result of errors in a certain measuring device, such
as a particular sensor, then it would be advantageous to know its effect
on the missile miss distance. The term "error budgeting" refers to the
synthesis problem; the allowable miss distance or "error" is given and
the objective is to budget this allowable error among several contribu-
ting sources.

The statistical covariance technique uses linearized variational
(or incremental) equations about a nominal flight path. As a result,
the superposition principle can be applied using each independent input
noise source individually with all others set to zero. Appropriate
allocations can be made on this basis by adjusting weighting coefficients
on the input noise sources until an acceptable combination is determined.

e. Summary

The statistical covariance technique has been developed
in the paragraph for linear, time-varying systems. The practical use
of the technique in an approximate analysis of nonlinear systems has
been demonstrated on a second-order example. From the exact nonlinear
incremental equations, the accuracy expected to be obtained by using the
statistical covariance technique may be predicted for similar systems.
Furthermore, in such cases, an estimate of the number of Monte Carlo
runs needed to achieve this same accuracy may be determined.

In summary, the most dramatic result of Paragraph 3 is that not
only does the statistical covariance technique yield useful results for
nonlinear systems but an estimate of its accuracy and the number of
Monte Carlo runs needed for comparable accuracy. In Paragraph 4, pro-
gram refinements, such as an automatic program for calculating incre-
mental equations, are described in detail. Subsequently, in Paragraph 5,
a sequential algorithm is developed to apply statistical covariance more
efficiently to large-scale missile systems.
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4. Program Refinements for the Statistical Covariance Technique

a. Introduction

The use of the basic statistical covariance technique on
simple, low-order, linear systems is straightforward. The method dis-
cussed in Paragraph 3 is much more satisfactory than the alternate
approach (Monte Carlo) of ensemble-averaging a large number of simula-
tion runs. Moreover, statistical rovariance applies to a wide range of
nonlinear problems, as described in paragraph 3. If the combination of
system nonlinearities and noise levels remain within acceptable limits,
then the results of the statistical covariance technique are important
in missile system analysis and design studies.

This paragraph examines the overall usefulness of the statistical
covariance technqiue as a computer analysis tool for large-scale missile
problems. Initially, the basic objectives are considered with special
emphasis on their interdependence. Program refinements are suggested
whenever possible to aid in realizing these overall objectives. Finally,
an automatic interrogation "wrap-around" program is described for uti-
lizing existing missile simulations in determining the required incre-
mental equations for statistical covariance.

b. Computer Analysis Objectives

Basic objectives -4 computer analysis tools for large-
scale systems may be convenien'.ly ý,rouped under the interrelated headings
of accuracy, computational speed, computing equipment requirements, and
ease of imp!emerLtation. Inthisparagraph the statistical covariance
technique will be examined from the viewpoint of how well it meets these
analysis objectives.

(1) Accuracy. The primary objective of any computer
analysis technique is to obtain sufficient accuracy for the results to
be trusted. Without some degree of confidence in the accuracy of a given
method, one cannot proceed with assurance to the more complicated design
problem. In the case of the statistical covariance technique, the exact
solution is obtained for linear systems. Furthermore, a very accurate,
though not exact, solution is realized for mildly nonlinear systems with
low noise levels. Only for highly nonlinear systems and/or high noise
levels does the accuracy become unacceptable. Even in those cases, the
statistical covariance results often compare favorably with the results
of the usual 25 to 50 Monte Carlo runs. Moreover, using the approach
developed in Paragraph 3, one can predict to some extent what accuracy
may be expected by statistical covariance on a given problem. Because
the statistical covariance technique may far exceed the acceptable level
of accuracy, it is often possible to operate at a reduced accuracy to aid
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in achieving one or more of the other, more elusive, interrelated goals,
such as computational speed or core requirements of the digital computer.
For example, if an error of only 1 percent is being achieved by sta-
tistical covariance, it might be advantageous to use either a larger
step size or a faster, but less accurate, integration method to speed up
the calculation while giving an error of 5 percent.

(2) Computational Speed. The second objective of a
computer analysis software package is to achieve results at a satis-
factory computational speed. As mentioned previously, speed is closely
related to accuracy and may be improved if less accuracy is permitted.
In addition to increasing speed by using a larger step size or a faster
integration method, e.g., Euler's method, there are certain simplifying
approximations which tend to speed up the basic statistical covariance
algorithm. One of these is the use of constant coefficients in place
of slowly time-varying coefficients in the incremental equations. These
coefficients vary slowly if the nominal (noise-free) trajectory is rela-
tively constant over a time span. Moreover, when particular coefficients,
even if variable, are near zero, neglecting them entirely can often
increase computational speed significantly. This approximations will be
utilized in the automatic sensitivity program.

(3) Computing Equipment Requirements. The third objec-
tive of computer-oriented tools is that they be amenable for operating
on a small or medium-sized digital computer, i.e., the limited equipment
aspect of all engineering problems must be considered in introducing a
new computer analysis tool. One consideration is word-length of the
computer. The statistical covariance technique can be easily handled on
the 32-bit Sigma 5. Work-length problems would arise in this cornection
only if the technique were being used on much smaller bit machines,
e.g., minicomputers. A second, much more important consideration is the
amount of core required for processing data in the statistical covariance
technique. A sequential algorithm is described in Paragraph 5 to aid
in reducing excessive core requirements. A rapid access device (RAD)
may be used as an extended core for overlaying problems. An RAD makes
available 1.5 million words of core in addition to the 32 K words of the
main memory. It should be noted that using the RAD decreases the com-
putational speed of a given algorithm. In particular, there is a delay
caused by an average latency time of 17 msec and a data transfer from
the RAD to the main memory (50 msec required to transfer 1500 words).
Therefore, recognizing that only limited equipment is available is
important in the design of computer-oriented algorithms. The statisti-
cal covariance technique can be tailored for operating on limited com-
puting equipment.

(4) Ease of Implementation. A fourth objective of com-
puter analysis techniques is that the algorithms be easily applied from
the user's viewpoint to a given problem. Special programming or the
need for precalculated data detracts from any computer method. For the
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statistical covariance technique, the structural form of the coefficients
for the incremental (or sensitivity) equations may be determined in
advance by taking partial derivatives as needed. An alternate approach
based on automatic machine computation will follow.

c. An Automatic Sensitivity Computer Package

The three basic parts of the statistical covariance package
are the determination of the incremental equation coefficients, the inte-
gration of the covariance equations, and the integration of thp nominal
system equations. The purpose of this section is to describe how the
incremental equation coefficients may be automatically computed from an
existing simulation program of the noise-free system.

Recall that for the nonlinear system given by Equation (2), i.e.,

fx, w, t)

the incremental equation coefficients are given by Equation (23), i.e.,

)f

A(t) = Tx

Bt = t)
yi=

The partial derivatives in Equation (23) may be computed numerically as

12N+ Aix, t) - t)2i

A(t) A

f xN Iw + AW't) -(N V t)

B(t) =,(39)
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where n_ represents the mean value of the input disturbance vector w,

which previously has been assumed to be zero. The notations Ax and Aw
in Equation (39) represent small perturbations about the nominal tra-
jectory xN(t). Because P(t) is being computed within the same time

advance loop, 5x and _w may be selected as one-tenth of the standard
deviation of x(t) and w(t), respectively. Whenever any main diagonal

element of P(t) is near zero, a lower limit on Ax, such as 10-4, should
be utilized.

This numerical evaluation of partial derivatives may also be applied
"for estimating the accurqcy expected in the analysis of nonlinear systems.
Equations may be formed similar to Equation (39) by using &x and Av as
one-sigma values, rather than one-tenth of a sigma in each case, i.e.,

+(N + a- _, t) - _f(N, , t) - A't) a. + gl(_N, , t)

The vectors g, and g2 in Equation (40) represent the higher order terms
in the Taylor series expansion of f about (XN, ) which in this case

has only been approximated numerically. A vector k may be computed
whose components ki represent the percent of the incremental equations
caused by the higher order terms, where

t) + g21(4' t)
k i A(t ) arX + B(t) awjf 100 percent.

These components of k enable the results of Paragraph 3 to be used to
obtain an estimate of the accuracy to be expected from the statistical
covariance technique.

Although these numerical procedures for determining A(t) and B(t)
are yet to be verified in actual nonlinear system simulations, they
represent a realistic approach toward achieving a self-contained computer
software package. The nominal system equations of existing simulations
can be placed inside the complete package which will interrogate the
system equations as required with small perturbations to form A(t) and
B(t). It will not even be necessary to know what the system equations
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are; only their number and the number and location of noise inputs are
required. Such a comprehensive computer software package for statisti-
cal covariance would be extremely useful for a wide variety of missile
systems analysis problems.

d. Summary

Program refinements for statistical covariance have been
described from the viewpoint of their impact on basic computer analysis
objectives: accuracy, computational speed, equipment required, and ease
of implementation. Numerical procedures have been developed for deter-
mining the coefficients of the Incremental equations. Furthermore, an
estimate of the accuracy of the statistical covariance technique may be
obtained. Finally, the philosophy of a self-contained computer software
package has been advanced to virtually eliminate the majority of imple-
mentation problems.

5. Sequential Calculations of the Statistical Covariance Equations

a. Introduction

In large-scale air defense missile systems it is con-
venient to be able to perform computations sequentially to avoid exces-
sive digital computer storage requirements. Mesarovic [35, 361 proposed
the concept of multilevel systems, whereby complex systems are partitioned
into simpler subsystems for analysis and design purposes. Mesarovic
used a hierarchy of system models to form a stratified description of
complex systems. Lefkowitz [371 described how the multilevel hierarchy
approach has been used to solve particular industrial problems. Noton
[381 has applied multilevel systems theory to derive a coordination algo-
rithm for a number of subsystem Kalman estimators.

A sequential algorithm, related to the multilevel system concept,
is developed in this paragraph for applying the statistical covariance
technique to large-scale missile systems. As shown in Figure 23, the
overall system is segmented into several subsystems interconnected by
feed-forward and feedback paths. It is believed that large-scale systems
can be handled more efficiently by the sequential algorithm than by the
basic covariance program.

b. The Sequential Approach

Consider again the basic statistical covariance equation
developed in Equation (17) of Psragraph 3 and repeated here for convenience.

=AP + PTAT + BQBT
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Figure 23. The Basic Large-Scale System Showing Individual
Subsystem Connections

Equation (17) describes the evolution of the state covariance matrix
P(t) as time increases from to. Let the large-scale system be segmented

into several subsystems as shown in Figure 23. In the subsystem context,
the matrices A, B, P, and Q may be partitioned as

1Al1 A12 AIN B • B 1N

A2 1  A2 2  A2 N B2 1

Am BB

ANI AN2 . A.NN] Bl . BJ
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Pli1 P1 2  P1N

P21 P22 P2N QlN

P =Q=

PNi PN2 N NN

The following two assumptions are made at this point:

1) The matrix P is symmetric, i.e., P = PT and in particular,

ij ji

2) Disturbances are uncorrelated with each other and each enters
only the single designated subsystems as shown in Figure 23. This means
that B and Q are diagonal.

Therefore, Equation (17) may be expressed as

ij = AilPlj + Ai2P2j + Ai3P3j + .. + AiN PNj

T T T AT T T pT T
ii ji 2i j2 3i j3 Ni jN

T

+ B Q B T F , (41)
ii ii ii ij

where 8ij is zero if i * j and unity if i = j. Equaticn (41) may be

conveniently grouped as
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i-I N

PiJ Ak Pkj A,, PiJ + I Aik PkJ

k=l k=i+l

J-1 N
I T T T + T T T

Pji A jk + P iAjj + Pki Ajk + BiQ QiB ii bij

k=l k=j+l

for i = 1 . ,Nand j = 1 ... N . (42)

T adT
The matrices ki and P in the second line of Equation (42) may be

Pii ii
replaced by Pik and P ij respectively, because P is symmetric. The

second and fifth terms in Equation (42) are the only ones involving Pij.

Moreover, the first and fourth terms have as coefficient matrices entries

from the lower left of the main diagonal of the system matrix A. These
terms represent feed-forward paths. Elements from the upper right of
the main diagonal of A appear in the third and sixth terms in Equation

(42) and represent feedback paths. The seventh, or last, term represents
input noise data. Rewriting Equation (42) and summarizing these obser-
vations, yields

A • Pi T +i AJ1P AT
Pij =A P +P A + [ Aik Pkj + Pik Ajk

~ ~[ ---- • k

Self-Interaction Feed-Forward Paths

+[ N N TiT
+ Aik Pkj + I Pik Aj + Bii Q~i B i bij " (43)

kwi+l k=j+l

Feedback Paths Noisy Inputs

What is desired is to apply Equation (43) sequentially to determine P..ii

for all i and all J. It is particularly important only to know P i' but

it may be shown that calculation for all i and j is necessary to com-
pletely determine P
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For example, consider the problem of determining P44 for the case

where no feedback terms are present. Using Equation (43) yields

-A P + P AT +A P + AT 44 Q B
44~ 44 44 44 44 43 34 P3 4 A4 3 B 4 4Q 4 4  4

P4 A P + P A +A P1P A
3 3334 34 44 32 p24 + 3 43

-A P + P A T +A P + T

24 22 24 24 44 21 14 23 4Z3

T T
P -A P +P A +P A (44)

In interpreting Equation (44), note that the four matrix equations must
be applied sequentially in reverse order, beginning with the last. The
matrices P 1 3 ' P 2 3, and P3 3 are known from calculations for the previous

subsystem, i.e., No. 3. It is assumed that subsystem No. 4 has inputs
only from subsystem No. 3 and from external sources.

A flow chart describing the sequential method for statistical
covariance calculations is provided in Figure 24. Additional investi-
gation is required to develop a workable computer software package for
use in large-scale missile system analysis.

c. Summary

This paragraph has described a sequential algorithm as
a means of handling large-scale analysis problems more efficiently than
the basic statistical covariance program. The new algorithm categorizes
terms on a subsystem basis as self-interacting, feed-forward paths,
feedback paths, and noisy inputs. Further work is needed to develop
the sequential algorithm into a useable computer software package.

6. Conclusions and Recommendations

a. Conclusions

The primary conclusion of this report is that the statis-

tical covariance technique yields significantly faster, more accurate,
results than the traditional Monte Carlo approach for a wide range of
missile systems analysis error propagation problems. The statistical
covariance algorithm, which gives exact results for linear, time-varying
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Figure 24. A Flow Chart of the Sequential Algorithm

49



systems, may be applied to nonlinear systems by using linearized incre-
mental equations about the noise-free solution. It was stated in Para-
graph 3 that the accuracy of the statistical covariance technique for
nonlinear systems depends entirely upon the relative accuracy of this
linearizing approximation. A parameter (a) of a second-order nonlinear
example was varied to demonstrate that, as a system becomes highly non-
linear, a larger error is obtained. Moreover, as the input noise level
(%w) was increased to very high values, the error in the statistical

covariance results was increased. It may be concluded that, while there
admittedly are extreme conditions for which the statistical covariance
algorithm yields unacceptable errors, the technique works satisfactorily
for the conditions occurring in most missile system analysis problems.

A special interrogation program has been suggested for automatically
computing the incremental equation coefficients by using existing missile
system simulations. This "wrap-around" program interrogates an existing
simulation program to determine locally linear sensitivity coefficients.
Therefore, it is unnecessary to reprogram a complex missile system simu-
lation to apply the statistical covariance technique. Furthermore, the
automatic sensitivity program is capable of computing information
required for estimating the accuracy of the statistical covariance results
and the number of Monte Carlo runs needed for comparable accuracy.

Procedures for transforming the statistical covariance results to
determine miss distances were also described in Paragraph 3. A short
integration program is required for handling the results of the trans-
formation for a complete missile systems analysis package.

A sequential algorithm was developed in Paragraph ) to aid in
reducing the amount of required computer storage. The new algorithm
treats the overall problem on a subsystem basis and performs statistical
covariance calculations serially from subsystem to subsystem. An addi-
tional approximation on sampling in feedback loops must be made to permit
the sequential ordering of these calculations.

It has been demonstrated that the Monte Carlo approach often yields
poor results in error propagation studies. In Paragraph 2 effort was
devoted to obtain a correct implementation of the Monte Carlo method.
In particular, several pseudo-random number generators were tested on a
second-order linear system. It was noted that, even for the best of
these generators, 1000 Monte Carlo runs only yielded an average error of
1.5 percent for the output variance. Furthermore, for the same linear
system errors of 30, 15, and 10 percent were obtained for 25, 50, and
100 runs, respectively. Similar results were obtained for a second-
order nonlinear system. The conclusion is that a larger number of Monte
Carlo runs than usually performed are required for acceptable accuracy.
Rather than expending excessive computer time for large numbers of Monte
Carlo runs, a more satisfactory approach is to utilize the faster statis-
tical covariance technique in a totally preprogrammed computer software
package.
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It has been shown that the statistical covariance technique is
applicable to a wide range of missile system analysis problems. In
Paragraph 4,the technique was evaluated according to four general objec-
tives of all computer analysis tools: accuracy, computational speed,
equipment requirements, and ease of implementation. Extreme accuracy
was demonstrated in Paragraphs 2 and 3 on linear and nonlinear sys-
tems. The accuracy prediction scheme may become important for highly
nonlinear systems with high noise levels. The computational speed was
compared favorably with Monte Carlo in Paragraph 4. The sequential
algorithm of Paragraph 5 was developed to help in solving the computer
storage problem, and the use of RAD further aids in making equip-
ment requirements less critical. Finally, the implementation problem
is greatly reduced by using the automatic sensitivity program for coeffi-
cient calculations as an integral part of the computer software package.

b. Recommendations for Further Work

The first recommendation is that a total computer software
package for statistical covariance be developed especially tailored for
missile systems analysis problems. In addition to the basic algorithm,
this package should include the automatic sensitivity program for cal-
culating incremental equation coefficients, an accuracy prediction pro-
gram associated with the automatic sensitivity program, and a miss dis-
tance transformation program. A comprehensive self-contained package
containing these programs would require only minimal information from
the user while providing the flexibility of performing difficult missile
system analysis production runs.

The second recommendation is that the sequential version of the
statistical covariance technique be programmed and tested as a means of
reducing computer storage requirements. Only when it has been shown
that a significant savings in storage is realized by the sequential
algorithm should it be incorporated into the total computer software
package.

Finally, the third reco-mendation is that improvements be made in
Monte Carlo simulations. The major deficiency at present is the need
for a better random number sequence to serve as system inputs. In
addition, more work on the discretization problem of continuous random
signals could be useful.

The development of these improvements in statistical techniques
would greatly enhance missile system analysis capabilities. Better
analysis techniques, as those described herein, must be further developed
and tested in practical systems operations.
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Appendix A. COMPUTER PROGRAMS FOR PSEUDO-RANDOM
NUMBER GENERATION

This appendix provides additional computer programs and output data
on the generation and testing of pseudo-random numbers from multiplica-
tive formulas. Figure A-1 gives the output of the computer program of the

Brown, (M - 2 20) generator shown in Figure 1. Corresponding results

for the Brown (M = 2 31) generator are included in Figures A-2 and A-3.
Figure A-4 shows the computer program used to obtain information for the

H = 22 0 curves in Figures 2 and 3. The program in Figure A-5 was used
for the Monte Carlo results plotted in Figures 5 and 6. These detailed
computer programs have been included in this Appendix for use in
the exact reproduction of the two Brown multiplicative generators
described in Paragraph 2 and their use in Monte Carlo simulations.
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1 C OPERATION OF A MULTIPLICATIVE DIGITAL GENERATOR
2 C
3 C
4 XMEAN=O.
5 SIG=I.
6 IX=31571
7 DUM=O.1
8 DO 99 K=1,30
9 C
10 C MULTIPLICATIVE GENERATOR
11 C WITH M=2 TO THE 31ST POWER
12 C
13 IY=19971*IX
14 TX=IY
15 IF (IX) 5,5,6
16 5 IY=IY+2147483647+1
17 6 U=IY*O.4656612873E-9
18 C
19 C TRANSFORMATION TO NORMAL
20 C
21 Z=SQRT (-2.O•*ALOG(DUM))*SIG
22 XNORM=Z*COS (6.28318*U) +XMEAN
23 C
24 DUM=U
25 PRINT 77,K,IX,U,XNORM
26 77 FORMAT(6X,I4,8X,I12,2F15.6)
27 99 CONTINUE
28 STOP
29 END

Figure A-2. The Brown Multiplicative Pseudo-Random Number Generator

with M = 231
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Figure A-3. The First 30 Number from the Brown (M = 2 31)
Generator in Figure A-2 of Appendix A
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1 c MUNTE CARLe RUN FdR A SECeNrl.eRDER
2 c LINEAR S-~STE?ý, IN PHASE VARIASLE FORM

3 c
4C
5 nIMENSLUN XE(2) .XS(2),XMO(2),XMI(2)eS(1O,2),

P. W84.05
9 MS82

II XNUMNNUPI

12 'NTOTALBlr~n
13 MTntTsNTUTAL/1C

14 De 31 (sliMS
Is 9V 31 Nuj*PTMT
16 31 S(N*K)*0e
17 XMLANaO.

is S108u1.U/SoWT(H)
19 IXz31571
20 OUM800l
21i D" 32 Mel#NU"
22 XE(1)oU*
P-3 XE(2)90*

P4 OnF 4? N*IPMTffT
25 '14 b2 L41#10
26 ly*slqql~l.)

;)7 TYeIvmI/101'8576
28 IXnIV.IYP*1048!576

30 '!eAX/104857fi@
31 IF(U)5pbo6
32 5 us"U
13 6 CeNTINUk.

i5 Ze5ORT(w2eO*ALtiG(OUMW)*SIG
36 XNt1RMvZWC55(6.88318*U)+XMEAN
37 I)UMaU
38 CALL YEQN(XE*XM0,XNORM)

39~a le 3 1.MS
40 23 WS(KuxE(K)+b4.X40(I()
41 CALL YLQrN(X5,XM~,XNeRM)
42 00 2 Kaj#MS

43 24 SE(K~S(aXt(K).XE5*Hdt (K'+m-()
44 52 C"NTINUE
'45 OP 53 (slAMS

47 442 C'4NTI'NJLE
48 V~ CeNTINUL
49 "CAmi
s0 DO 62 NAv1*MTVT
531 XNAwNA

Figure A-5. A Monte Carlo Simulation Program for the System

in Equation (7) Using the Brown (M = 2 20) Generator
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52 T M#Y!A* I(_'
93 SFýLU(!AKA)u.'8J333343733 -0*5a*FY(P.2.'*T)
54 1 +*OF-~bf66f6A7*EXP(u-.fl*T) -^*25*EYP(m4.C'.T)
155 S(NA,1(A) a1NAS(A)/XN1tdV

57 PRINT /1 Ya i C NAPA) AS'IL (NIA, A), 7)I F(NA, 1A)

gig 7 FqMAT(11Y#F~v?-p3F15v6)
99 632 CV %TI ',AA
1,0 P RI PT 1!)

A P SSixre
63 D4 97 NAw1,MT'T

6 4b 97 S518SR1+APS(rJI1("'A,)I
$i5 SlaS'i1*091

67 9d4 F"4MAT~eYpFPC*8)

$,9 SI

1 S ~TI',r XFGN,(YV)XMC,*RT)

Figure A-5. Concluded
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Appendix B. THE EXACT CONVOLUTION SOLUTION FOR THE OUTPUT
VARIANCE IN LINEAR SYSTEMS

Consider a linear system with zero input for t < 0 and with a sta-
tionary random process w(t) as input for t >- 0. Let w(t) be a zero-
mean white noise process with variance QW" Because the input statistics

are different for the two ranges of t, the effective input must be con-
sidered to be nonstationary. Papoulis [391 has shown that the expression
for the output autocorrelation is given by

Rxx(tl, t 2) = R (tl, t 2) * h(tl) * h (t 2) (B-i)

where * represents the convolution operation and h(t) is the impulse
response of the linear system, i.e., the inverse Laplace transform of
the transfer function H(s).

As an example, consider the second-order system given in Equation (7)
of Paragraph 1. The impulse response h(t) is obtained by using Equation
(8), i.e.,

h(t) = L-1 H(s) = L f(s + 1)(s + 2)1

-t -2t
= e - e t > 0 (B-2)

Performing the first convolution in Equation (B-i) yields

R Ww(tl, t2) * h(t) %"(tl - t2) * (e-tl - e 2tl)

for t1 -? 0, t 2 2! 0

=f Qw)(t 1 - t 2 - T) [e-" - e-2¶] d'r

0

0 Otherwise

PrectdiIt page blank (B-3)
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The second convolution yields

R x(t Q t2) = [R(t 1l t 2 ) h (tl)] * h(t2)

f Q2 -[e 1tl - 2t+tr) (e2(t2 -e t [eI -4 - e2r] dr

0

Rx(tl t2) = , e(t l - t 2 ) [ e2t2) -41 e3t2)1

- ~ (tlI - t 2 ) [4_( -e3t2) - 4t2)]

fort 1 t 2- 0 (B-4)

Therefore, the output variance Qf(t) is given by

x(t) R= R(t 1 2 t 2 )

- t 1 = t 2 
t =

Q~) [A~ 2t 2 -3t 1 -4t

for t ý 0 (B-5)

This exact solution is used for comparison with Monte Carlo simulations
in Figure 5.
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Appendix C. COMBINED STATISTICAL COVARIANCE AND MONTE CARLO
COMPUTER PROGRAMS

The combined statistical covariance and Monte Carlo simulation pro-
gram for a second-order nonlinear system (Figure C-i) is included in this
appendix. This basic program was modified for different input data to
produce the numdrical results given in Figures 11 through 20.
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-I W-L5M BIKUL MINAMR1 ru STATIUT1L.AL eVWRvARCr--
2 _____ C AND MONTE CARLO FOR A NONLINEAR SYSTEM

4 C

101

11 AXtt~ee1

12- NUM9UW0

1.4 -NTOTAL6100

16 M__r___

is 8 MTVTw10

20 ___ - XLTwLT

24 XE(1)wQ9
L75 - - xV0F)uiXE2
26 05 2 K61vN
27 2 w1iff)v~ --

28 __A(1,1)u.2@ _______

29 - A~Em1 __

- 32 LI ) 12 L8ILT

34

36 CALL 0E"1(P1#PMOA#R1
37 Iff 13K.fN5 -

___38 ____13 PSCI~oP1(K)+ H *PMOWI

40 0~~~D 14 K31.NS _________________

44 x~aRM8O.
-45------C ALL X1UN(toEXM0#XNOKM)

46 ne23 K8UIDMS __ ______

47 7r.KFq. pI,4xRv1rT
48 CALL X[gN(XSoXM1.XN&Rk-)

so 24 XE(K)sXE(X)+0e5*H*(XP4n(K)+XM1 ý(K))
51 I2"CfFNTT~iME

Figure C-1. A Combined Program for Statistical Covariance
and Monte Carlo for a Nonlinear System
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53 11 CONTINUE

01010" 1_w_1_ 1NYIN)

59 _____ IXP31571 -

61 00 32 MvjpNUM

63 XE(E)MAXE2
64. 42 malaRIU 15

65 __ R52 L41#47

67 __ VmYld87

69 AXRIX
70 - .yU*AX/1LJ95576*be .

71 !F(U15506.
~~-5 Ui'stF

73 6 CONTIN'UE

75 YvSGRT(w2*O.AL"G(DUM )l*S1I;
76 3"v. + A

77 DUMOU

79 c INTEGQATI"14 USING RK?

41 00 73 g(Uj#9kq

83 -~CALL XEQNCXSXM1,XN5PRM)
-70 74-KWIP"S

8s 74 XEK*EK+s**(MNK+"()

87 ~~Z(N)o7(N)+XE(1)____

89 42 CEINTINUE
12- CUNTT~uE -

91 Oe 6? NAulINTOT

93 Iu*HXNA*XLT

9(NA)wS(NA)/XNUM

97 - -- IF(KA ~u1OO..(Si(NA).S0L(N4A) )/S(NAI
PRrNT 7TSN)3LN,0''A

997 Fe~m4T(1OX#F 5*2,3F15.10) -

101 SSIDOO
-- -- M 1 7 N-A61,4TOT

103 97 SS~mSSl+A6SCi1F(NA))

Figure C-1. Continued
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106 - .94 FeRMAT-(20Xs F200.8)1
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Figure C-1. Concluded
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Appendix D. A TRANSFORMATION FOR NORMAL RANDOM VARIABLES

The objective of this appendix is to develop a linear transformation
for transforming two correlated normal random variables, by and bz, into

two uncorrelated normal random variables, by1 and 5z1. The results of
this transformation are expressed in Equation (32) of Paragraph 3.

Assuming zero means for all variables, consider the linear trans-
formation defined by

by = by cos a - 5z sin a

1
5z = by sin a + 5z cos a • (D-l)

The requirement for byl and bzi to be uncorrelated is that E{ by z} 0,
i.e.,

Ebyl 5zl) = E (by) 2cos a sin ( - by 5z sin2 C

+ by 5z Cos2 a - (z) 2 Cos 2 U} " (D-2)

The value of for which Equation (D-2) equals zero is given by

I tn 1 2E(6y bz )=2 tan 2 2 (D-3)

2 2 a3z " a F)y

Moreover, the values of a2bl and a 1 are

* n2 02 + 2 2
byl=Y• a •z cos 6

+ 2rsybz oFy Cz cos a sin

2 2 COS2 2 sin2
bzI b y + bz

- 2r,,yz cos a sin a (D-4)
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Therefore, Equation (D-3) completely specifies the required transforma-tion, and Equation (D-4) may be used in Equation (32) of Paragraph 3 toyield the required density function.
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